Qu	Scheme	Marks	AO
1. (a)	From [5,20) $fd = 3$ or 1 large square = 2.5 passengers o.e.	M1	2.2a
	Correct bar above [0, 5)	A1	1.1b
	Correct bar above [20, 40)	A1	1.1b
		(3)	
(b)	For [40, 65) <u>130</u> passengers <u>or</u> for [65, 80) <u>60</u> passengers	M1	2.1
	For attempt to find total number of passengers = 331	Alft	1.1b
	$[\text{Median} =] 40 + \frac{\frac{1}{2}("331") - 140}{"130"} \times 25 \text{ or } 65 - \frac{270 - \frac{1}{2}("331")}{"130"} \times 25 \text{ (o.e.)}$	M1	1.1b
	= 44.9038 = awrt 44.9	A1	1.1b
		(4)	
(c)	Upper outlier limit = $58.9 + 1.5 \times (58.9 - 27.3) = 106 (.3) > 90$	M1	2.4
	So oldest passenger 1s <u>not</u> an outlier	Al	2.2a
		(2) (9 marks)	
	Notes	(* ** **)	
(a)	M1 for attempt at fd or a suitable method to deduce the scale for the his	stogram	
	May be implied by one correct bar.		
	1^{re} A1 for first bar [0, 5) with $\text{Id} = 1$ or 2 large squares high $2^{\text{nd}} \Delta 1$ for third bar with $\text{Id} = 4.5$ or 9 large squares high		
	2 At for third bar with $1d + 3 \underline{0}$) harge squares high		
(b)	1 st M1 for an attempt using their fd to find the missing frequencies. M	ay be in table	
	1 st A1ft for a clear attempt to find the total number of passengers (ft the	ir 130 and 60))
	2 nd MI for any expression/equation leading to correct Q_2 Must be using $2^{nd} A_1$ for any expression/equation leading to 45)	g 40-65 class	
	2 A1 101 awrt 44.9 (allow $(n + 1)$ leading to 43)		
(c)	M1 for finding the upper outlier limit (expression or awrt 106) and stating	ng or implying	g > 90
	A1 dep on M1 seen for deducing NOT an outlier		-

Qu		Sche	eme		Mark	AO
2. (a)	Class	Frequency	Cum. Frequency			
	0-1	15	15	1	M1	2.1
	1-2	35	50			
	2 - 3.5	75	125	1	A1	1.1b
	3.5 - 4.5	55	180			
	$[Q_2 =](3.5) + \frac{\frac{256}{2} - "125"}{"55"}$	$\times (4.5 - 3.5)$	$\frac{5}{2} (4.5) - \frac{"180" - \frac{256}{2}}{"55"} \times$	1	M1	2.1
	= 3.5545	awrt <u>3.55</u>		1	A1	1.1b
			(0)		(4)	
(b)	Need area under curve to	be 256 so	$\int_{(0)}^{(8)} kx(8-x) \mathrm{d}x = 256$	1	M1	3.1a
	$k \left[4x^2 - \frac{x^3}{3} \right]_{(0)}^{(8)} = 256$			1	M1	1.1b
	{	$k \left[4 \times 8^2 - \frac{8}{3} \times 8^2 \right]$	$8^2] = 256 \Longrightarrow \} \underline{k=3}$	1	A 1	1.1b
					(3)	
(c)	[By symmetry median =] <u>4</u>		I	B1	2.2a
					(1)	ka)
			Notes		(o mai	N 3)
(a)	1 st M1 for an attempt to	form frequen	cy table (at least 1 st 4	rows and freq or cu	ım freq	seen
	must have the free	quency of 75 c	orrect and can condon	e one error/omissio	on in 15	, 35, 55)
	Frequencies or c	um freq may b	be seen on bars of the l	nistogram		
	I st Al for identifying cl	ass, freq and c	cum freq (i.e. highlight	ed values from the	table)	<u>or</u>
	or diagram with	125 "128" 1	120 - 125 01 100 - 80 35 & 45	- 128		
	May be implied	by values in 2^{120}	nd M1expression			
	2^{nd} M1 for a correct calc	vulation for Q_2	(condone error in end	point e.g. 3.45 or	3.49 etc)
	Can ft their "125	" (provided >	100) and their "55"			
	Allow use of $(n + 1)$, usually see $128.5 - \dots$ leading to $3.5636\dots$ or awrt 3.56					
	2^{nu} A1 awrt 3.55 but 3.	555 is fine (al	low 3.56 if $(n + 1)$ bei	ng usedneed sig	the of $\frac{23}{2}$	- etc)
	Correct answer v	with no incorre	ect working scores 4/4			
(b)	1 st M1 for identifying th	e need to find	the area under the cur	ve by integrating		
	2 nd M1 for correct integr	ation and $= 25$	6 (condone missing li	mits)		
	A1 for $k = 3$ [M	ay see use of o	calculator for the integ	ration so score 2 nd	M1A1 t	together]
വി	NR The g	nswer to nar	t (c) may be written y	vithin the question	n	
	B1 for 4 (Independe	ent of their val	ue of k but must be the	eir "x" value)		
	NB when $k = 0.2$	5 and $x = 4$ given by $x = 4$	ves $v = 4$ so must be cl	ear they intend me	dian = 4	1
		U		ear mey meena me	ulull	

Question	Scheme	Marks	AOs		
3(a)	$61 \times (2 \times 3), 63 \times (2 \times 12), 65 \times (2 \times 8), 67 \times (2 \times 2)$	M1	2.1		
	$\frac{61 \times (2 \times 3) + 63 \times (2 \times 12) + 65 \times (2 \times 8) + 67 \times (2 \times 2)}{50} = 63.72*$	A1*cso	1.1b		
		(2)			
(b)	$\sqrt{\frac{61^2 \times 6 + 63^2 \times 24 + 65^2 \times 16 + 67^2 \times 4}{50} - 63.72^2}$	M1	1.1b		
	$=\sqrt{2.5216} = 1.58795$ = awrt <u>1.59</u>	Al	1.1b		
		(2)			
(c)	No effect (oe) sincee.g.				
	 since addition/subtraction does not affect the standard deviation (only multiplication and division do) the weights will have the same spread the distance of each weight from the mean will not have changed they all change by the same amount 	B1	2.4		
		(1)			
		(5 marks)		
	Notes	(1510 1(10.200		
(a)	M1: at least 3 correct products seen (oe) Allow any 3 from 366, 1512, 1040, 268 A1*cso: correct expression for mean (which may be seen in stages) and given answer. $\frac{3186}{50} = 63.72$ on its own is M0A0, but $\frac{3186}{50} = 63.72$ following all 4 correct products seen can score M1A1				
SC:	B2: $\frac{61 \times 3 + 63 \times 12 + 65 \times 8 + 67 \times 2}{25} = 63.72*$ scores M1A1 on	epen			
	M1: correct expression for the standard deviation including root Allow equivalent complete methods e.g. $\sqrt{((1 - (2, 72)^2 + 24)(2 - (2, 72)^2 + 1)((5 - (2, 72)^2 + 4)(7 - (2, 72)^2))}$				
	$\sqrt{\frac{6(61-63.72)^{2}+24(63-63.72)^{2}+16(65-63.72)^{2}+4(67-63.72)^{2}}{50}}$	5.72)			
(b)	NB: $\sum fx^2 = 203138$				
	A1: awrt 1.59 (allow $s = awrt 1.60$)				
	Correct answer with no incorrect working scores 2 out of 2				
SC:	B2: $\sqrt{\frac{61^2 \times 3 + 63^2 \times 12 + 65^2 \times 8 + 67^2 \times 2}{25}} - 63.72^2 = \text{awrt } 1.59 \text{ scores M1A1 on}$				
	epen				
(c)	B1: correct statement and correct explanation				

Qu 4	Scheme	Marks	AO	
(a)	$2 \times 4.2, 4 \times 4, 4 \times 3.5, 10 \times 1 \ (= 8.4 + 16 + 14 + 10 = 48.4)$	M1	1.1b	
	$\left[\text{So P}(10 < T < 30) = \right] \left[\frac{48.4}{90}\right] = \frac{121}{225} = 0.53777 \underline{0.53 \sim 0.54} \text{ (2sf OK)}$	A1	1.1b	
(b)	(Not suitable as) data is not symmetric <u>or</u> is skew (normal is symmetric) ("Even" distribution or a diagram <u>on its own</u> is not enough so B0)	(2) B1 (1)	2.4	
(c)	$\int x e^{-x} (dx) = \int x d(-e^{-x})$	M1	2.1	
	$= \left[-x e^{-x}\right] - \int \left(-e^{-x}\right) \left(dx\right) (+c)$	A1	1.1b	
	$\int_{0}^{n} x e^{-x} (dx) = \left[-x e^{-x} - e^{-x} \right]_{0}^{n} = \left(-n e^{-n} - e^{-n} \right) - \left[-(0) - 1 \right]$	dM1	1.1b	
	$= 1 - (n+1)e^{-n}$ (*)	A1cso* (4)	1.1b	
(d)	Require area = 90 i.e. $k \int_{(0)}^{(n)} x e^{-x} dx = 90$ (ignore limits)	M1	3.1a	
	Using the result in part (c) with $n = 4$ gives $k \left[1 - 5e^{-4} \right] = 90$	M1	2.1	
	(k=) <u>99(</u> .0729) (*)	A1cso*	1.1b	
(e)(i)	$[P(10 < T < 30) =] 0.64863 \text{ awrt } \underline{0.649}$	(3) B1 (1)	1.1b	
(ii)	[No. of patients =] $(99) \left[(1 - 4e^{-3}) - (1 - 2e^{-1}) \right]$ (= 53.1)	M1	3.4	
	Prob = $\frac{0.5366\times99}{90}$ = 0.59027[or 0.5907] = awrt <u>0.590 or 0.591</u>	A1 (2)	3.2a	
(f)	eg Patients might stay longer than 40 hours (Can ignore other comments unless clearly contradictory.)	B1 (1)	3.5b	
	N-4	(14 mar	ks)	
(a)	Notes M1 for an attempt to find the number between 10 and 30 (2 correct products	or 48 or 4	8.4 seen)	
(u)	A1 for 2sf answer in $[0.53 \sim 0.54]$ NB use of 48 gives 0.5333 [Correct and	is implies 2	2/2]	
(b)	B1 for a comment suggesting not suitable based on (lack of) symmetry <u>or</u> "	fnot bell sh	aped"	
(c)	1 st M1 for attempting integration by parts in right direction. Must have $u = x$	x and $v = \pm$	$= e^{-x}$	
	$1^{st} A1$ for a correct first step, correct first integration and expression for second $2^{nd} dM1$ (dep on $1^{st} M1$) for all integration attempted and some use of at least	ond integra	al	
*	2^{nd} A1 for cso with no incorrect working seen. Minimum is correct int and us	se of limits	seen.	
(d)	1^{st} M1 for realising need area under the curve (implied by the integral) = 90)		
*	A less for $k = 99$ or awrt 99.1	U/\ldots or be	etter	
NB	Allow use of $k = 99$ and show area = awrt 89.9 with a conclusion to	score 3/3		
(e)(i) (ii)	B1for awrt 0.649M1for use of (c) with $n = 1$ and $n = 3$ Don't need the 99. Implied by sight of awrt 0.54A1for awrt 0.590 or awrt 0.591Allow 0.59 from correct working seen.			
(f)	B1 eg for comment, in context, about the upper limit for <u>time (t or x)</u> (time/hc	our may be	implied)	